

Soil Compaction, Soil Shearing and Fuel Consumption: A Practical Tool for Desision-Making in Farming and Forestry

Autors E. Diserens, A. Battiato

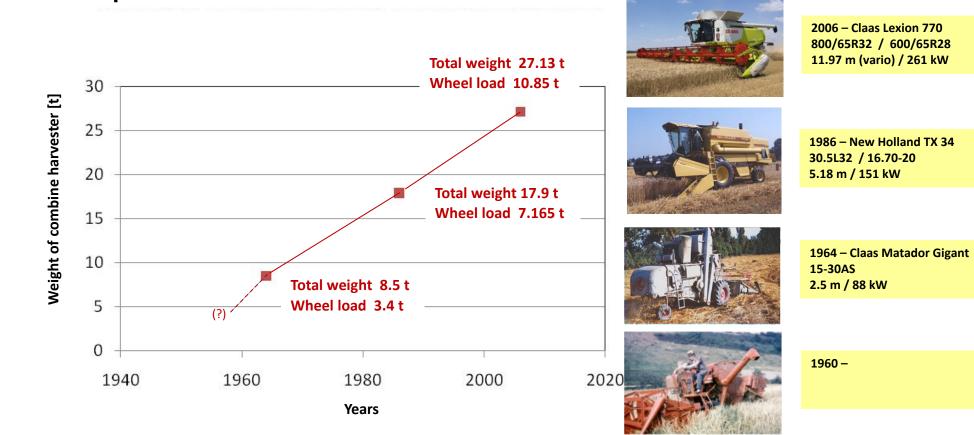
> Programming **R. Meier**

* former TASC designation *Tyres/Track And Soil Compaction*

Outline

Part 1 - Soil compaction

- Introduction Problem
- Valuation principle
- Topsoil hardness
- · Contact pressure and contact surface
- Stress propagation
- Indicative values
- Stress limits
- Solutions

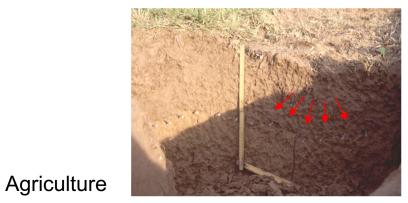

Part 2 - Slip, traction force, soil failure and fuel consumption

- Introduction Problem
- Valuation principle
- Soil-tyres interaction model
- Soil shearing
- Traction-slip curve
- Traction force
- Fuel consumption
- Solutions

TASC - flow chart

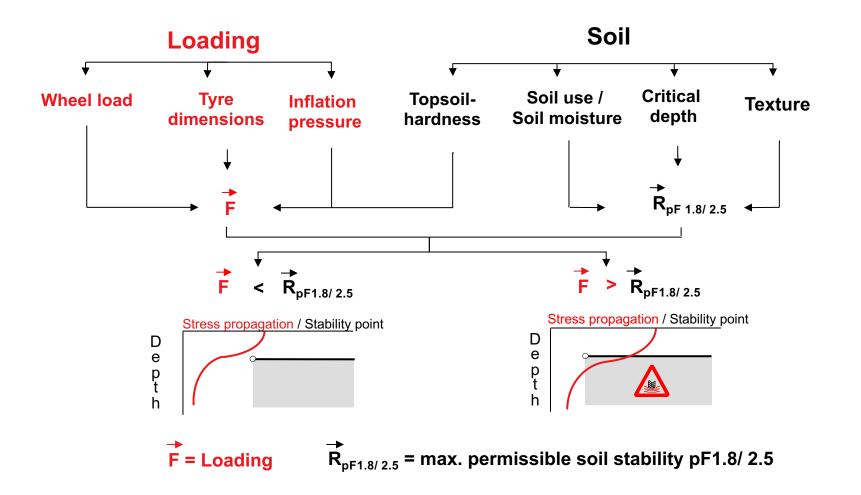
Part 1 - Soil compaction

Size and power evolution of combine harvester


Topsoil...

Subsoil damages

Forestry

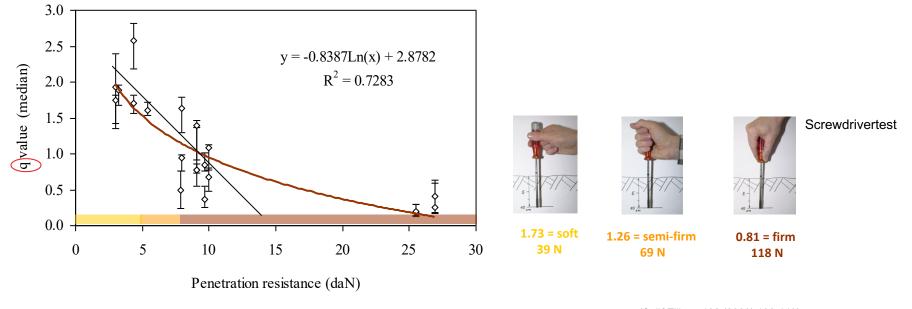


Source: L. Volk FH Soest

Ruts

Soil deformation in the depth Asphyxiation

TASC - Basic principle - Compaction damage at the subsoil (below the critical depth)



Topsoil hardness and vertical stress propagation σ_Z

$$\sigma_{z} = \frac{2q\sigma_{m}}{\pi} \left[\arctan \frac{ab}{Rz} + \frac{abz}{R} \left(\frac{1}{a^{2} + z^{2}} + \frac{1}{b^{2} + z^{2}} \right) \right] \quad \text{with} \quad R^{2} = a^{2} + b^{2} + z^{2}$$

according to Boussinesq (basic algorithm)

TASC V4.0.xls q: Factor for the topsoil hardness

(Soil&Tillage 102 (2009) 138-143)

Contact pressure σ_m and contact surface A

$$\sigma_{z} = \frac{2q\sigma_{m}}{\pi} \left[\arctan \frac{ab}{Rz} + \frac{abz}{R} \left(\frac{1}{a^{2} + z^{2}} + \frac{1}{b^{2} + z^{2}} \right) \right] \quad \text{with} \quad R^{2} = a^{2} + b^{2} + z^{2}$$
according to Boussinesq (basic algorithm)

Traction tyres

$$(A_{m^{2}}) = f(b[m], d[m], F[kN], P_{i}[kPa])$$

Firm soil

b/d < 0.6 $A = 0.191 bd + 0.460^{*10^{-3}} F - 14.8^{*10^{-5}} Pi$ $n = 22; R^{2} = 0.973; p_{BD} = 0.000; p_{F} = 0.004; p_{Pi} = 0.031$

 $b/d \ge 0.6$ $A = 0.187 bd + 0.382^{*}10^{-3} F - 28.4^{*}10^{-5} Pi$ $n = 42; R^{2} = 0.950; p_{BD} = 0.000; p_{F} = 0.004; p_{Pi} = 0.069$

Biosystems Engineering 110 (2011) 73-82

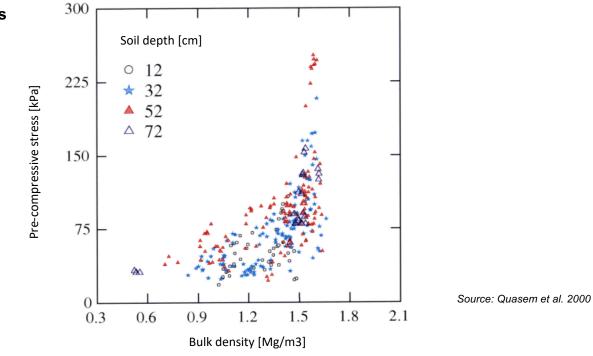
Soft soil

 $b/d < 0.6 \quad A = 0.247 BD + 0.582 * 10^{-3} F - 19.3 * 10^{-5} Pi \qquad n = 7; R^2 = 0.949; p_{BD} = 0.109; p_F = 0.134; p_{Pi} = 0.536$ $b/d \ge 0.6 \quad A = 0.127 BD + 0.498 * 10^{-3} F - 89.0 * 10^{-5} Pi + 0.172 \qquad n = 29; R^2 = 0.917; p_{BD} = 0.000; p_F = 0.000; p_{Pi} = 0$

Encyclopedia of agrophysics, Springer, 2011

A: contact area; b: tyre width; d: tyre diameter; F: wheel weight; Pi: inflation pressure

Indicative values


Effective bulk density δ_{eff}

 $\delta_{eff} = \delta_s + 0.009 \cdot C$ where: $\delta_s = bulk density [g/cm^3]$ C = Clay content [%]

Indicative values δ_{eff}

for arable soil : 1.7 g/cm³ for forest soil : 1.5 g/cm³

Relationship pre-compressive stress versus bulk density δ_s

Stress limits and texture under wet and dry soil conditions

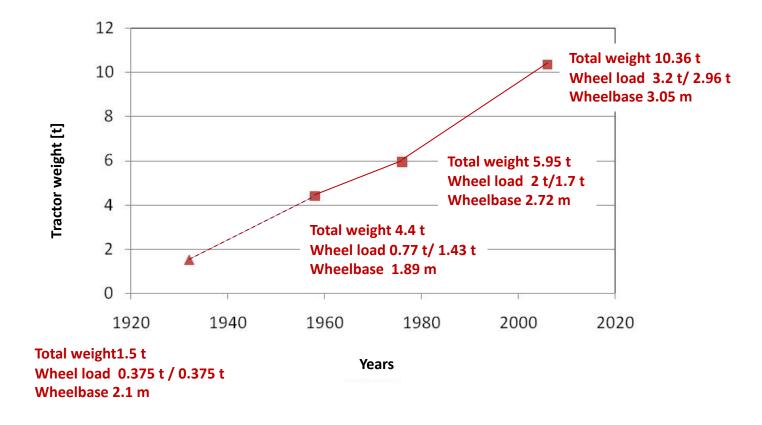
Classes of texture	-	v limit [kPa] st soil pF 2.5	Soil stability Agricultu pF 1.8	
Clay soil 45 % C	55	70	80	95
Sily soil 15 % C, 80 % U	60	85	105	130
Clay loam, loam 21 % C	50	70	85	110
Sandy loam, loamy sand 11 % C	65	90	110	145
Sand 5 % C	75	110	130	170

Stress propagation and soil hardness - a clay and sand soil, semi-firm and firm

2006 – Claas Lexion 770

1986 – New Holland TX 34

1964 – Claas Matador Gigant


semi firm 69 N semi firm 69 N soil hardness semi firm 69 N soil moisture dry pF 2.5 wet pF 1.8 dry pF 2.5 wet pF 1.8 dry pF 2.5 wet pF 1.8 soill texture clay clav sand clay sand clay sand sand clay sand clav sand soil pressure [kPa] 115 130 160 critical depth [cm] 19 0 24 8 33 0 40 18 46 18 53 32 firm 147 N firm 167 N firm 118 N firm 137 N soil hardness dry pF 2.5 wet pF 1.8 dry pF 2.5 wet pF 1.8 soil moisture sand sand sand clay clay clay clay sand soil texture 178 144 soil pressure [kPa] critical depth [cm] 21 23 22 0 22 0 0 0

Max. tilling depth : 25 cm

Soil Compaction, Soil Shearing and Fuel Consumption: TASC - A Practical Tool for Desision-Making in Farming and Forestry E. Diserens, A. Battiato

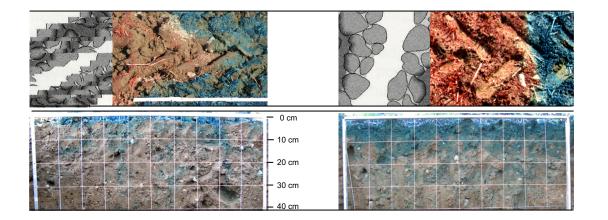
Part 2 - Slip, traction force, soil failure and fuel consumption

Size and power evolution of the tractors

2006 - Fendt vario 936 600/65R34 / 710/70R42 *100/80 kPa* 261 kW

1976 - Fendt 614 SL 16.9R26 / 20.8R38 130/100 kPa 100 kW

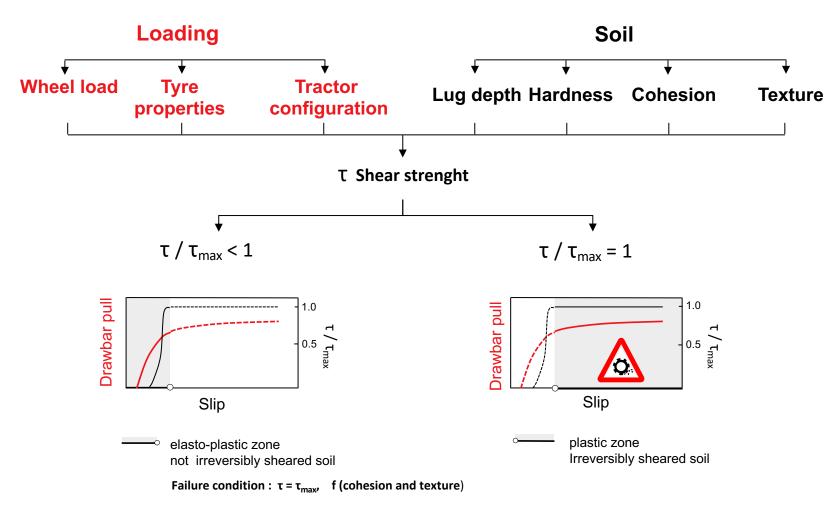
1958 - John Deere 830 7.5-18 / 18.4-34 *250/80 kPa* 56 kW


1936 - Massey-Harris 101S 5.5-16 / 11.2-24 100/100 kPa 23 kW

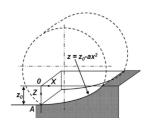
Introduction - Problem

Impact on the topsoil

Impact on the subsoil

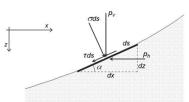


Blue dye ** [Area distribution %]			Water infiltration ksat [10 ⁻² m/day]		
Depth	25 % slip	0 % slip	Depth	25 % slip	0 % slip
0.0 - 0.1 m	21,84	81,00	0.0 - 0.1 m	0.50	18.12
0.1 - 0.2 m	15,10	49,02	0.1 - 0.2 m	0.74	5.39
0.2 – 0.3 m	8,56	40,08	0.2 – 0.3 m	-	-
0.3 – 0.4 m	4,74	22,48	0.3 – 0.4 m	3.58	8.13

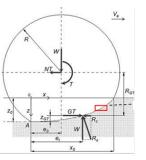

* Tractor H488 65 kW - 25 % slip

** stubble, loam soil

TASC - Basic principle - Shearing damage at the topsoil

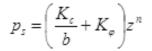


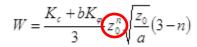
I – Soil-tyre contact surface z_0 , a



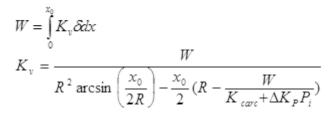
(Osetinsky & Shmulevich; 2004)

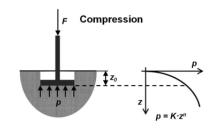
II – Stress distribution σ , τ along the contact surface

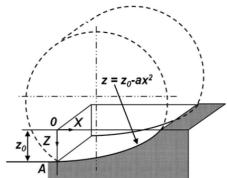

III – Gross traction GT, net traction NT, soil compaction resistance R_c , driving torque T and Power P

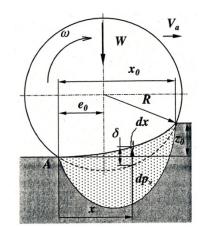

(Osetinsky A., Shmulevich I., 2004)

I – Soil-tyre contact surface z_0 , a


Friction modulus of deformation - K_{φ} and cohesive modulus of deformation K_c of the soil


Wheel load or total soil reaction


Wheel load from tyre parameters



Implicite solution for z_0 and a

(Osetinsky A., Shmulevich I., 2004)

Soil Compaction, Soil Shearing and Fuel Consumption: TASC - A Practical Tool for Desision-Making in Farming and Forestry E. Diserens, A. Battiato

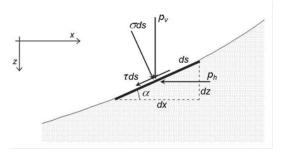
 $W = K_v \left\{ \frac{ax_0^3}{3} - \sqrt{R^2 - e_0^2} \left(x_0 - \frac{e_0}{2} \right) + \frac{x_0 - e_0}{2} \sqrt{R^2 - (x_0 - e_0)^2} + \frac{R^2}{2} \left[\arcsin\left(\frac{x_0 - e_0}{R}\right) + \arcsin\left(\frac{e_0}{R}\right) \right] \right\}$

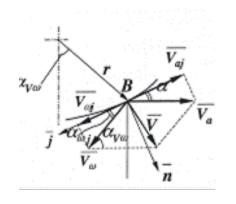
II – Stress distribution along the contact surface, σ , τ and slip *i*, *i*_f, *i*_r

Vertical and horizontal components of the elementary force p_v and p_h

 $p_{h} = (\alpha ds) \sin \alpha - (\pi ds) \cos \alpha \quad \text{with} \quad ds \sin \alpha = b dz$ $p_{v} = (\alpha ds) \cos \alpha + (\pi ds) \sin \alpha \quad \text{with} \quad ds \cos \alpha = b dx$

Shear stress τ , normal stress σ and soil displacement *j*


$$\begin{aligned} & \tau = (c + \sigma tan \varphi) \left(1 - e^{-j/k} \right) & \sigma = \frac{\sigma_v - c \left(1 - e^{-j/k} \right) 2ax}{1 + tg \varphi \left(1 - e^{-j/k} \right) 2ax} & \text{with} \quad \sigma_v = \frac{dp_v}{b dx} = \frac{K_v \delta}{b} \end{aligned} \\ & \text{with} \quad j = \int_0^t V_j dt & \text{with} \quad V_j = V_{aj} - V_{aj} \end{aligned}$$


Slip *i*

$$i = \frac{\varpi R_r - V_{\alpha}}{\varpi R_r} \qquad \text{with } R_r \text{ as rolling radius}$$

Slip of the front wheel- i_f slip of the rear wheel i_r

 $i_f = i_r$

III – Gross traction GT, net traction NT, soil compaction resistance R_{c} , driving torque T and Power P

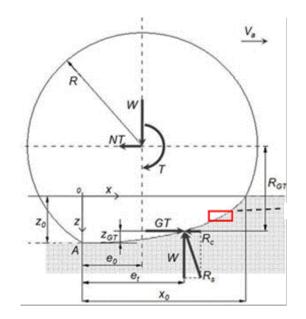
Gross traction GT

$$GT = \int_{0}^{x_{0}} p_{k} = \int_{x}^{x_{0}} \frac{\sigma_{v} \left[2ax - \tan \varphi \left(1 - e^{-j/k} \right) \right] - c \left(1 - e^{-j/k} \right) \left[(2ax)^{2} + 1 \right]}{1 + 2ax \left(1 - e^{-j/k} \right) \tan \varphi} bdx$$

Soil compaction resistance R_c

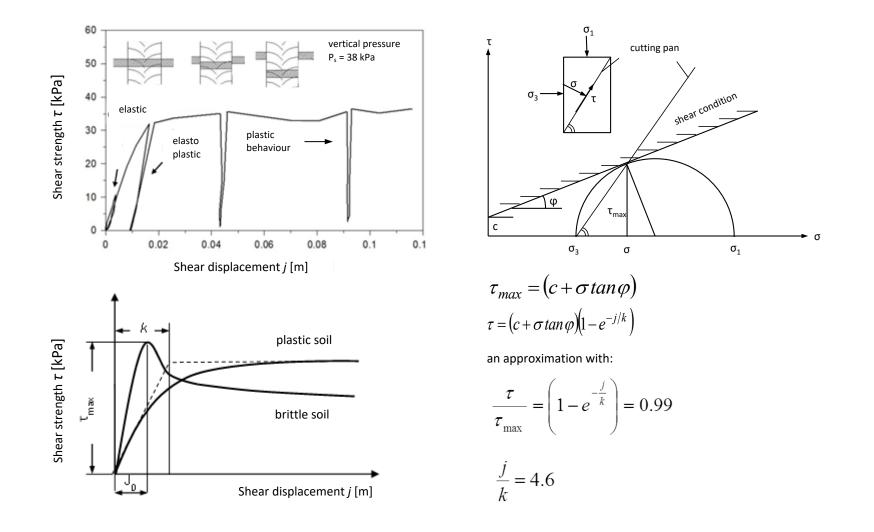
$$R_{\varepsilon} = \int_{0}^{z_{0}} p_{s} b dz = (K_{\varepsilon} + bK_{\varphi}) \frac{z_{0}^{s+1}}{n+1}$$

Net traction NT


 $NT = GT - R_c$

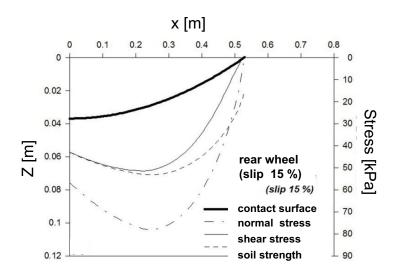
Driving torque T

$$\begin{split} M_r &= W(e_t - e_0) \quad \text{with} \quad We_t = \int_0^{x_0} K_v \delta x dx \\ M_{GT} &= GT \cdot R_{GT} \quad \text{with} \quad R_{GT} = \sqrt{R^2 - e_0^2} - z_{GT} \quad T = M_{GT} + M_r \end{split}$$

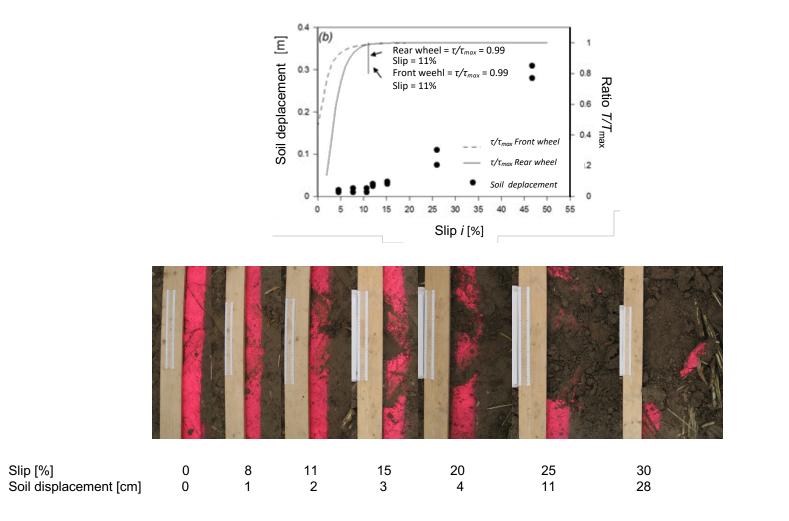

Net power P_{NT} , power on wheels P_{GT}

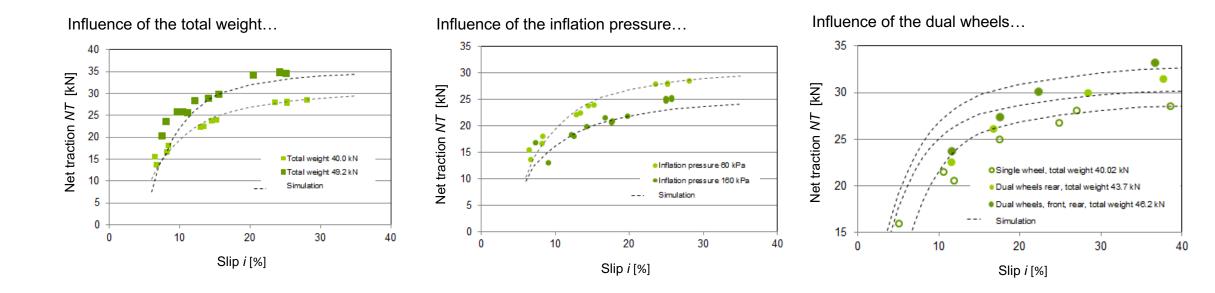
$$P_{\scriptscriptstyle NT} = NT \cdot V_a \qquad \qquad P_{\scriptscriptstyle GT} = T \cdot \omega$$

(Osetinsky A., Shmulevich I., 2004)

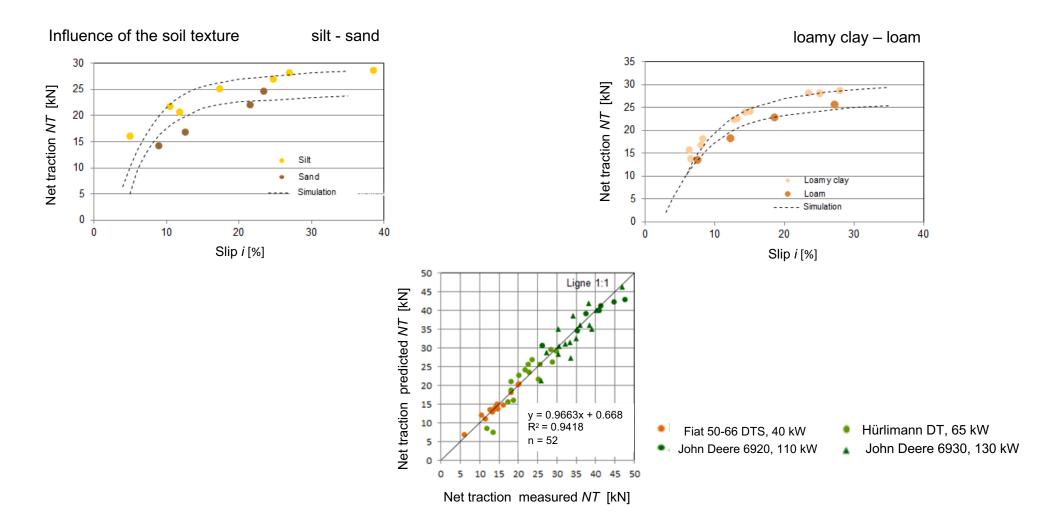

Soil shearing - conditions

Soil shearing – measurements and simulation


Tractor: 65 kW Total weight 4 t. Inflation pressure : 0.6 bar Soil: 27 % C; 53 % U; 20 % S



Soil shearing


Soil shearing – measurements and simulation

Traction slip curves

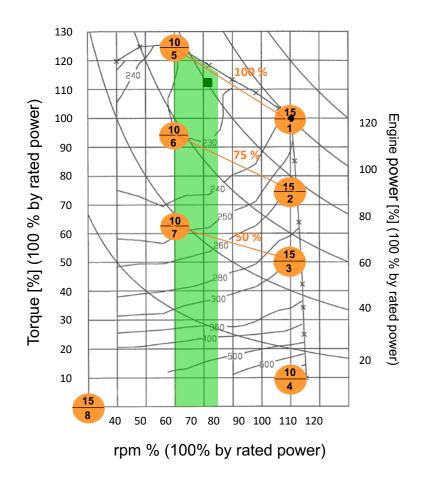
Traction slip curves

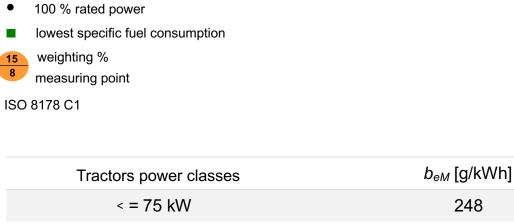
Traction force

Draft requirement

 $NT = F_i A = [A + Bv + Cv^2] \cdot WT$ ASABE American Society of Agricultural and Biological Engineers

with:


D = Draft requirement [N]					
F = Soil parameters, depending on texture					
i = 1 for clay, 2 for loam and 3 for sand					
A, B and C = machine-specific parameters					
v = field speed [km/h]					
W = machine width [m] / number of tools $[n_t]$ / number of rows $[n_r]$					
T = tillage depth [cm]					



Implements for soil tillage and seedi	Machine specific parameter			Soil s	Soil specific parameter		
Width unit	Units	А	В	с	F ₁ Fine soil	F ₂ Medium soil	F ₃ Coarse soil
SUBSOIL TILLAGE	teste	225	0	1.0		0.70	0.45
Subsoiler / Manure injector narrow point [t]	tools	226	0	1.8	1	0.70	0.45
Subsoiler / Manure injector - 0.3 m winged point [t]	tools	294	0	2.4	1	0.70	0.45
Moidboard Plow [m] m		652	0	5.1	1	0.70	0.45

→ until 41 tools for subsoil tillage, topsoil tillage, seedlings and cultivation

Specific fuel consumption (engine)

>75 kW

223

Schäffeler U., Keller M., 2008

٠

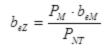
15

8

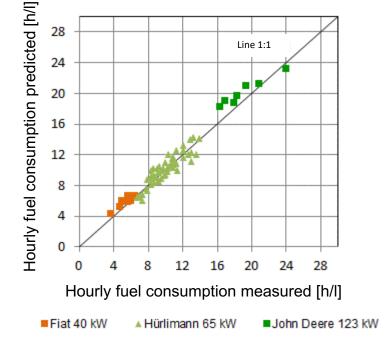
Calculation of the specific fuel consumption

Engine power P_M [kW]

$$P_M = \frac{P_{GT}}{\eta_G}$$


 P_{GT} : tractive power on the driving wheels [kW] η_G : efficiency faktror for the transmission **0.85**

Hourly fuel consumption *B_e* [l/h]


$$B_{e} = P_{M} \cdot \frac{b_{eM}}{1000} \cdot \frac{1}{\delta_{D}}$$

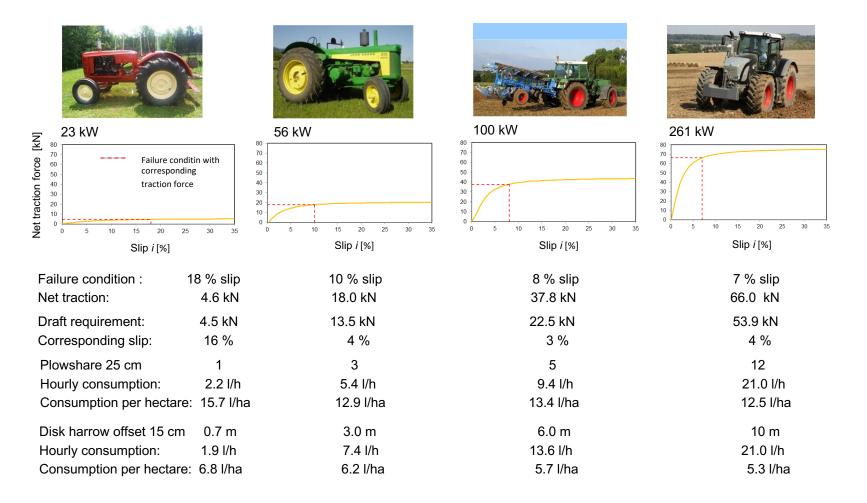
$$b_{eM}: \text{ specific fuel consumption} \text{ of the engine [g/kWh]} \\ \delta_{D}: \text{ specific weight of the diesel} \\ [Mg/m^{3}]$$

Net specific fuel consumption B_{eZ} [g/kWh]

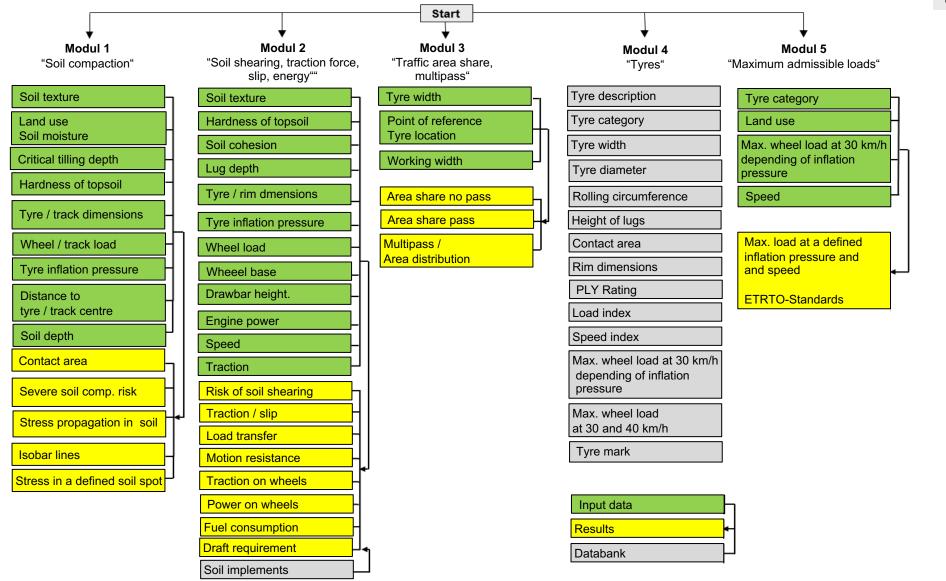
P_{NT}: tractive power [kW]

Solutions

Evaluation of topsoil damages with TASC


Load transfer, compressive stress at the plouging pan and pass distribution - silty soil, semi-firm - ploughing

23 kW	56 kW	100 kW	261 kW
Soil depth 24 48 [cm]	Soil depth 24 48 72 72 72 72 72	Soil depth 24 48 [cm]	Soil depth [cm]
75 60 45 30 15 0 15 30 45 60 75	75 60 45 30 15 0 15 30 45 60 75	75 60 45 30 15 0 15 30 45 60 75	75 60 45 30 15 0 15 30 45 60 75
Distance to tyre/track centre [cm]	Distance to tyre/track centre [cm]	Distance to tyre/track centre [cm]	Distance to tyre/track centre [cm]
Load transfer : 0.608 kN Vertical stress in the furrow : 120 kPa	1.609 kN 196 kN	1.942 kN 83 kPa	4.513 kN 84 kPa
Working width: 0.35 m	1.05 m	1.75 m	4.2 m
No pass : 22.9 %	56.2 %	70.3 %	82.4 %
Multipass total : 77.1 %	43.8 %	29.7 %	17.6 %
1x 31.4 %	24.8 %	4.6 %	3.8 %
2x 47.5 %	19.0 %	25.1 %	13.8 %


Solutions

Soil failure risks and fuel consumption with TASC

silty soil, semi-firm – plough/ disk harrow – 4 km/h

TASC - flow chart

